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Abstract—Recent studies show that privacy leakages may occur
in vertical federated learning (VFL), where parties hold split
features of the same samples. While various attacks, including
label and feature inference, focus on record-level privacy risks
in VFL, few studies delve into the distribution-level privacy
threat. In this paper, we explore property inference attacks (PIAs)
in VFL, where an adversarial party seeks to deduce global
distribution information about a target property in the victim
party’s training set. Our key observation is that the Lp-norm
distribution of intermediate results in VFL could reflect the frac-
tion of the target property in a training set. Inspired by this, we
present ProVFL, a novel PIA framework involving distribution
comparison and correlation augmentation modules. To achieve
property inference, we design a distribution comparison module
by creating various intermediate-result populations with different
proportions, aiming to learn the relationship between Lp-norm
distributions and their fractions. Then, we theoretically analyze
the factors that contribute to the attack effectiveness and develop
a correlation augmentation module based on label replacement
and model refinement to amplify property information leakage.
Extensive experimental results demonstrate that our attacks can
achieve inferences with low estimation errors as low as 1%. This
poses the immediate threat of property information leakage from
private training data in the VFL setting.

Index Terms—Property inference attacks, vertical federated
learning, privacy attacks, defense mechanisms.

I. INTRODUCTION

W ITH consideration for data privacy and security,
federated learning (FL) [1] is proposed to train a

high-quality model collaboratively across parties without cen-
tralizing their data. FL can be categorized into two types based
on how data is partitioned within a feature and sample space:
horizontal federated learning (HFL) and vertical federated
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Fig. 1. An example of PIA in a two-party VFL setting. Consider a VFL system
where an e-commerce platform and a bank institution collaboratively develop
a loan prediction model using their overlapping samples. The e-commerce
platform infers the statistical distribution of educational degrees for common
users and adjusts advertising policies for this population.

learning (VFL). In contrast to HFL, where parties typically
possess data with identical feature spaces, VFL operates
on decentralized data sharing the same sample IDs while
having different features [2], [3]. Application cases of VFL
appear in finance, e-commerce, and healthcare [4], [5], [6].
As an example in Figure 1, for an e-commerce platform
and bank institution, VFL offers a solution to merge distinct
and distributed training samples, enabling them to develop
a powerful loan prediction model without accessing original
private records.

Typically, a VFL system has two types of parties: passive
party that solely holds sample features, and active party
that supplies both sample labels and features. Each party
constructs a bottom model based on its own private dataset,
uploads intermediate outputs to a top model controlled by
an active party, and subsequently updates the bottom model
based on intermediate gradients from the top model [7]. While
VFL keeps each party’s private data locally, it is susceptible
to various privacy attacks. Recent studies have thoroughly
investigated these threats, including feature inference attacks
[2], [8], [9], [10] and label inference attacks [3], [11], [12],
[13]. The former entails adversaries reconstructing private data
from model updates exchanged across parties, whereas the
latter reveals sensitive label information of training samples
[3]. Both attacks target the record-level privacy leakage of
VFL as they operate on individual training samples.

Different from previous privacy studies, this paper pioneers
the investigation of property inference attacks (PIAs) against
VFL, which target distribution-level privacy leakage. In PIAs,
an attacker can infer the characteristics and statistical informa-
tion about a specific property of interest (i.e., target property)
in a training set. Such distribution-level information leakage
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may cause privacy breach [14], [15] or intellectual property
infringement [15], [16], as an example provided in Figure 1.
Understanding and exploring such privacy leakage helps shed
light on privacy protection in VFL.

Unfortunately, existing works [17], [18] are not directly
applicable to the VFL setting due to the following fundamental
differences. At first, existing PIAs, designed for centralized
learning or HFL, are impractical for VFL as they often require
the training of shadow models on the full feature space
[14], [15], [16], [17], [19]. However, an adversarial party
in VFL has access to partial feature space, which makes it
unable to replicate the complete training procedure. Besides,
the heterogeneous feature spaces within VFL provide limited
information for an adversarial party [18]. This restricts the
effectiveness of PIAs based on attribute inference attacks
(AIAs) [20], [21], which heavily relies on a strong correlation
between the target property and the task label, as well as on the
availability of adversarial knowledge [17]. These limitations
motivate our contributions towards a specific approach as well
as a thorough analysis for VFL.

To bridge this gap, we deeply investigate property infor-
mation leakage within a partial feature space controlled by a
malicious party in VFL. The essence of property inference is
that different fractions of the training set on a target prop-
erty may lead to distinction on model outputs or parameters
[14], [15], [16]. Such a distinction can also be reflected in
VFL intermediate results (i.e., outputs and gradients). This
leads us to discover that the scale of divergences in the Lp-
norm distribution of intermediate results is aligned with the
fractional gap between two different populations. Building on
this, we propose a novel PIA framework for VFL, named
ProVFL, which infers the fraction of a target property based
on the observed Lp-norm distributions of intermediate results.
ProVFL comprises a distribution comparison module and a
correlation augmentation module. In the first module, we
randomly sample various populations with different fractions
and learn the correspondence between Lp-norm distributions
of intermediate results. To further enhance the attack effec-
tiveness, we conduct a theoretical analysis of the factors
influencing its performance and incorporate the correlation
augmentation module. The second module incorporates two
methods: (1) a label replacement technique that discreetly
substitutes the original labels with the target property, embed-
ding more relevant information into the VFL system, and
(2) a model refinement strategy that enhances the attacker’s
bottom model by utilizing supervised knowledge of the target
properties and amplifying distribution disparities between pop-
ulations. Experiment results demonstrate that both of them are
effective in decreasing estimation errors of property inference.

The main contributions of this paper are summarized as
follows:

• We propose a novel PIA framework for VFL, named
ProVFL. To the best of our knowledge, this is the first
work to investigate PIAs within VFL while achieving low
estimation errors.

• To achieve property inference, we devise a distribution
comparison module by creating various intermediate-
result populations with different proportions. This module

can learn the relationship between Lp-norm distributions
and their fractions.

• Motivated by our theoretical analysis, we develop label
replacement and model refinement approaches in the
correlation augmentation module to enhance the effec-
tiveness of PIAs. These approaches can amplify property
information leakage while improving attack performance.

• We validate the effectiveness of ProVFL on fourteen
target properties in five real-world datasets. Also, several
defenses are explored to safeguard against such leakage
risk.

The rest of the paper is organized as follows. We intro-
duce related work in Section II and the research problem
in Section III. Then, following the key observation in Sec-
tion IV, Section V presents our attack framework and detailed
approaches. Section VI shows experiment settings and evalu-
ation results. We also evaluate our attack on a set of defense
mechanisms in Section VII. Finally, Section VIII concludes
this paper.

II. RELATED WORK

A. Property Inference Attacks

They aim to infer statistical information about a training
set, such as the proportion of samples related to a specific
target property in the dataset. By constructing a batch of
shadow models and training a meta-classifier, various PIAs
have been introduced across different architectures, including
neural networks [19], [22], generative adversarial networks
[23], graph neural networks [17], and diffusion models [24],
[25]. Their core idea is that similar training datasets result
in comparable model performance, either in terms of model
predictions [14], [19] or model parameters [22]. Another
method based on AIAs recovers the attribute values of training
samples and subsequently summarizes them [23], [25]. This
approach relies on the correlation between inferred attributes
and labels, as well as the adversarial knowledge available [17],
[26].

PIAs have also been extended to collaborative learning con-
texts [19], [20], [27], [28]. Melis et al. [20] utilize snapshots
of the global model to construct a batch property classifier
in HFL. The classifier can infer properties related to a subset
of the training inputs or detect when a specific property is
present in the training data. Like shadow-training methods,
[19] examines the disclosure of properties in a multi-party
environment through model predictions. These studies focus
on PIAs in HFL, while the risk of property leakage in VFL has
received little attention. Our work bridges this gap by revealing
that an adversarial party can make highly accurate inferences
about target properties, highlighting the immediate threat of
property information leakage in VFL.

B. Defenses Against Property Inference Attacks

Intuitive defensive techniques, such as adding noise or
removing sensitive properties, are not effective at protecting
against property leakage. Previous research suggests that dif-
ferential privacy [29], which is designed for individual privacy
protection, offers limited mitigation [14], [15], [19]. Due
to inherent correlations across features, removing sensitive
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TABLE I
NOTATIONS

attributes cannot solve property leakage inherently [19]. As for
FL, another strategy is to reduce the amount of information
exchanged between parties, such as by sharing fewer gradients
[20], [30] and adding noise to model updates [22], [27], [31].
However, these techniques fail to provide adequate protection
while maintaining acceptable model utility. Hence, there is a
lack of rigorous and powerful defenses against distribution-
level information leakage [16], [32].

III. PROBLEM FORMULATION

A. Vertical Federated Learning

Following [7], [33], we consider a typical VFL setting
in which K parties {P1, P2, . . . , PK} use N overlapping data
samples D = {(xi, yi)}Ni=1 to train a machine learning model.
Each sample xi is constructed by joining the distributed
features xk

i ∈ Dk across parties and the label yi ∈ Y is provided
by the active party.

Upon preparing the training set, Pk utilizes its local dataset
to train a bottom model fθk parameterized with θk. Let vk

i
denote its intermediate output, i.e., vk

i = fθk (xk
i ). A top

model hφ aggregates all intermediate outputs in a certain
way, e.g., by concatenation, where φ denotes the top model
parameter. Let vi = [v1

i , v2
i , . . ., vK

i ] denote the concatenated
vector of xi. Subsequently, hφ makes the final prediction as
hφ(vi) and computes corresponding gradients by minimizing
the following objective function:

L =
1
|D|

X
(xi,yi)∈D

`
�
hφ
�

fθ1

�
x1

i

�
, . . . , fθK

�
xK

i

��
, yi
�
, (1)

where ` is a loss function, e.g., the cross-entropy function.
The active party calculates the loss using Eq.(1) and updates
the top model using ∇φL. Next, the active party computes
the partial gradients for each bottom model and sends them
back. Finally, each party updates its respective bottom model
accordingly. Detailed notations can be found in Table I.

B. Record-Level Intermediate Result

Unlike aggregated model updates in HFL, a VFL adversary
could acquire fine-grained exchanged information, including

record-level intermediate output and gradient. Intuitively, a
party Pk can access the intermediate output of a training
sample xk

i with its bottom model, i.e., vk
i . Moreover, common

sample IDs in VFL expose the intermediate gradients of
individual data points to the active party who can obtain
record-level intermediate gradients by replaying the optimiza-
tion process, i.e., gk

i = ∇vk
i
`(hφ(vi), yi). However, passive

parties only observe aggregated gradients of multiple samples
[2] due to lacking control over the top model or access to label
information.

Before introducing possible adversarial knowledge, we
define AO and AG as record-level intermediate outputs and
gradients derived from the adversarial party’s data points,
respectively. Similarly, VO and VG refer to record-level
intermediate outputs and gradients associated with the victim
party’s data points.

C. Adversary’s Objective

We investigate PIAs in the context of VFL, where an
adversarial party Pk infers statistical information about a
sensitive attribute owned by a victim party. Formally, given
a target property p, a training bottom model fθk and external
adversarial knowledge Ω, a PIA model can be defined as
follows:

A : {p, fθk , Ω} → t, (2)

where t is the predicted fraction of p in the victim party’s
training dataset.

D. Adversary’s Capacity

We assume that an attacker can gather some auxiliary data,
with each sample labeled as either having or not having the
target property. This is an assumption commonly made by
other PIAs [15], [16], [22], where a key difference is that we
consider those data from the adversarial party’s feature space
rather than the victim party’s, as accessing data from other
parties is typically challenging in VFL. To achieve this, an
attacker might inquire about inferred properties from a subset
of their users or adopt other attacks, e.g., feature inference
attacks [2], [34], [35] to reconstruct some noisy samples from
the victim party’s side in advance. We further discuss and relax
this assumption in Section VI.

With auxiliary data, an adversarial party can receive
different amounts of information, including knowledge of
intermediate results and the top model, to cause property
leakage. Considering the adversary’s role in VFL, we examine
its adversarial knowledge Ω under two cases:

(C1) Active party as the PIA adversary: Given that the
active party provides label information and typically possesses
more computational resources, it often undertakes the training
of the top model [3]. Hence, in this scenario, the adversarial
knowledge encompasses four types of intermediate results and
a controllable top model, i.e., Ω =

˚
AO,AG,VO,VG, hφ

	
.

(C2) Passive party as the PIA adversary: Compared to
the active party, a passive party has access to less adversarial
knowledge because its bottom model is the only controllable
component. Consequently, in this case, we explore property
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Fig. 2. Different Lp-norm distributions of VO between D0 and D1. ∆ means the fraction gap of the target property.

leakage of VFL when an attacker relies solely on its record-
level intermediate outputs during the training process, i.e., Ω =

{AO}.

IV. KEY OBSERVATION

In this section, we first provide insights into what reveals
property information to attackers in VFL, which motivates us
to design a specific PIA for VFL.

The norms of latent outputs and gradients of a neural net-
work hold a substantial amount of semantic information [36],
[37], [38], which motivates many research areas, including
person recognition [39], [40], [41] and model explanations
[42], [43], [44]. We expect that such norms encompass side
information about target properties and project intermediate
results of training samples closer to those with similar prop-
erties.

To validate this conjecture, we present a case study about
property information leakage of VFL in a real-world dataset.
At first, we classify training samples with the target prop-
erty as property samples and those without as non-property
samples. We construct two kinds of datasets, D0 and D1,
each comprising 2,000 sampled data points. Four different
D0 contain {0%, 25%, 50%, 75%} of property samples and
the remaining are non-property samples, respectively, while
D1 only contains property samples. Hence the fraction gaps
between D0 and D1 on the target property are {100%, 75%,

TABLE II
THE DISTANCE COMPARISON OF DIFFERENT NORM OPTIONS

50%, 25%}. Subsequently, we collect the victim party’s inter-
mediate outputs (i.e., VO) of each sample in these sets and
present their L1-norm, L2-norm and L∞-norm distributions in
Figure 2. We find that the difference becomes less pronounced
as the fractional gap decreases. For example, the overlap
between distributions is significantly greater in the ∆ = 25%
scenario than in the ∆ = 75% case, regardless of the norm
option. We further present a quantitative analysis of distances
between these distributions in Table II, using KL divergence
(KL), JS divergence (JS), and Bhattacharyya coefficient (BC).
Regarding for different norm options, the results indicate
that the L1-norm type effectively captures differences between
distributions, leading it as the default norm function in the
following.
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Fig. 3. An overview of ProVFL in a two-party VFL setting. ProVFL
involves two main modules: distribution comparison (DC) and correlation
augmentation (CA). Within CA, there are two approaches: Label Replacement
(LR) and Model Refinement (MR).

The above observation shows that the norms of interme-
diate results contain property-related information, indicating
a correspondence between the Lp-norm distributions of
intermediate-result populations and their inherent fractions.
Drawing inspiration from this, we leverage distribution-level
differences to identify the statistical characteristics of a target
property. The following section details the process of our
proposed PIAs by learning such correspondence in VFL.

V. ATTACK FRAMEWORK

Exchanged intermediate results among VFL parties inad-
vertently expose property information to possible adversaries
during training. Based on that, we propose a novel framework
of PIAs in VFL, named ProVFL, in which an adversarial party
can identify the exact fraction of a target property owned by
other parties with low inference error. As Figure 3 shows, it
involves two modules: distribution comparison (DC) exploits
the correspondence between intermediate-result distributions
and fractions of the target property to infer property informa-
tion, and correlation augmentation (CA) increases the property
leakage of VFL to boost the attack performance. Within the
CA module, we design two approaches, label replacement and
model refinement, to achieve better attack performance. We
introduce each module of ProVFL in detail below.

A. Distribution Comparison

The core idea behind DC is to create multiple intermediate-
result distributions with different fractions and then compare
these to the victim party’s distribution. To achieve this, DC
involves three phases: (1) Distribution generation constructs
various intermediate-result populations from auxiliary data.
(2) Regression ensemble learns the correspondence to target
properties by developing a set of regression models. (3)
Property inference identifies the fraction of the victim party’s
dataset. We assume that an adversarial party initiates a PIA

at the eS EC-th training epoch. As Algorithm 1 presents, DC is
performed as follows:

1) Distribution generation (Lines 1-7). In this process,
the adversary aims to construct pairwise training data
points for an attack model by sampling intermediate
result populations with varying fractions related to the
target property.
Given a specific kind of intermediate result to use, such
as one of {AO, AG, VO, VG}, the attacker, e.g., Pk,
first extracts these from auxiliary dataset Daux and the
attacker’s training dataset Dk, respectively. Each sample
in the auxiliary dataset originates from the adversary’s
feature space and is additionally labeled to indicate
the presence of the target property. Such data can be
collected from a subset of users on the adversary’s side
or inferred using advanced feature inference attacks. We
define them as Dir

aux and Dir
k , where each record corre-

sponds to the intermediate result representation of an
individual sample. Next, the adversary creates a fraction
candidate set {0%, q%,..., 100%} with a q% interval.
For its fraction element r, DC creates an intermediate-
result subset where r of the samples corresponds to
property samples, while the remaining 1 − r of the
subset belongs to non-property samples. Subsequently,
we construct the L1-norm distribution of this subset by
concatenating the L1-norm values of all elements. We
use ẑ = [‖z1‖1 , ‖z2‖1 , . . ., ‖zM‖1] ∈ R1×M , where ‖·‖1
denotes the L1-norm function and zi is the intermediate
result of a training sample. Finally, we obtain an attack
data point (ẑ, r) and then establish an attack training set
Datt for each kind of intermediate result in a similar way.

2) Regression ensemble (Line 8). After preparing the
attack training set, DC employs regression models to
learn the relationship between L1-norm distributions and
fractions. These regression models serve as the attack
model for property inference.
We use gϕ to refer to a regression model with ϕ
representing its parameters and train it to minimize
the total sum of absolute errors between predicted
and actual fractions in Datt, formulated as ϕ ←

arg min
ϕ

1
|Datt |

P
(ẑ,r)∈Datt

`
�
gϕ(ẑ), r

�
, where ` denotes a loss

function used in regression tasks, such as mean squared
error.
When multiple types of intermediate results are observ-
able in C1, we employ ensemble methods by combining
regression models trained on different types of attack
training sets to improve overall prediction accuracy.
Specifically, each regression model is initially trained
independently using a specific type of intermediate
result. The predictions from all models are then aggre-
gated into an ensemble by averaging their outputs.
This ensemble is ultimately used to predict property
inference. For the C2 scenario, only a single regression
model is necessary.

3) Property inference (Lines 9-13). To estimate the pro-
portion of a target property within the victim party’s
dataset, an attacker queries the attack model using the
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Algorithm 1 Distribution Comparison: Using Intermediate
Results to Infer Property Information in VFL

L1-norm distributions of the training samples they can
access.
The attacker randomly selects M data points from Dir

k to
construct a distribution vector, uses it to query the attack
model, and obtains the predicted fraction. To enhance
the robustness and accuracy of property inference, we
generate Q distribution vectors and use the average
of their predicted fractions as the final result. When
multiple types of intermediate results are accessed,
the attacker performs the above process independently
for each type. This involves obtaining distribution
vectors for all kinds of intermediate results and ulti-
mately querying the ensemble model to achieve property
inference.

B. Theoretical Analysis

Intuitively, enhancing the representational capabilities is
advantageous for inference attacks related to the target prop-
erty, as it enables an adversary to more clearly differentiate
between property and non-property samples. We now analyze
and demonstrate this point from a theoretical perspective.
Following previous works [15], [16], we reduce exact property

Algorithm 2 Passive and Active Property Inference Attacks
for Two-Party VFL

estimation into a binary classification task to distinguish two
worlds. Then, a simplified PIA is to classify the following
worlds:

World 0: The VFL has an intermediate-result distribution
D0 whose proportion of the target property is t0.

World 1: The VFL has an intermediate-result distribution
D1 whose proportion of the target property is t1.

We introduce distinguishing accuracy (DAcc) to measure
how well an adversary can distinguish between D0 and D1.
This metric signifies the probability of an adversary accurately
discerning between two distributions when it can access two
datasets randomly sampled from D0 or D1, respectively. Now,
we provide an upper bound of the distinguishing accuracy as
follows.

Theorem 1 (The Upper Bound of Distinguishing Accuracy):
Given that t∗ represents the prior probability of a sample
having the target property, q is the fraction difference between
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two datasets, the distinguishing accuracy is bounded as:

DAcc ≤
1 +

r
1 −

�
1 + q(c−t∗)

t∗(1−c)

�−N

2
, (3)

where c = Pr[p = 1|z] denotes the conditional probability of an
observed intermediate result owning the target property, and
N denotes the size of an intermediate-result dataset.

Proof: Let Z denote a particular type of intermediate results,
i.e., Z ∈ {AO,AG,VO,VG} and z ∈ Z as one of its elements.
According to the corresponding probability density function,
two distributions D0 and D1 can be expressed as follows:

D0 : ρ0 = t0Pr[z|p = 1] + (1 − t0) Pr[z|p = 0],
D1 : ρ1 = t1Pr[z|p = 1] + (1 − t1) Pr[z|p = 0]. (4)

Without loss of generality, we consider the case when q =

t0 − t1. Then, given t∗ = Pr[p = 1], and according to Eq.(4),
we have:

ρ0 = (t1+q)
Pr[z] Pr[p = 1|z]

Pr[p = 1]
+(1−t1−q)

Pr[z] Pr[p = 0|z]
Pr[p = 0]

= (t1 + q)
Pr[z]c

t∗
+ (1 − t1 − q)

Pr[z] (1 − c)
1 − t∗

. (5)

Similarly,

ρ1 = t1
Pr[z]c

t∗
+ (1 − t1)

Pr[z] (1 − c)
1 − t∗

. (6)

Combining Eq.(5) and Eq.(6), we can derive:

ρ0

ρ1
= 1 +

q (c − t∗)
t1 (c − t∗) + t∗ (1 − c)

≤ 1 +
q (c − t∗)
t∗ (1 − c)

. (7)

The KL-divergence distance dKL between ρ0 and ρ1 can be
written as

dKL (ρ0||ρ1) =

Z
ρ0 (z) log

�
ρ0 (z)
ρ1 (z)

�
dz

≤

Z
ρ0 (z) log

�
1 +

q (c − t∗)
t∗ (1 − c)

�
dz

= log
�

1 +
q (c − t∗)
t∗ (1 − c)

�Z
ρ0 (z) dz

= log
�

1 +
q (c − t∗)
t∗ (1 − c)

�
. (8)

Based on the derivation above and previous work [32], for two
datasets D′0 and D′1 containing N data points from D0 and D1,
respectively, we achieve that:

DAcc ≤
1 + dTV

�
D′0,D

′
1

�
2

≤
1 +

p
1 − e−dKL(D′0 ||D

′
1)

2

≤

1 +

r
1 −

�
1 + q(c−t∗)

t∗(1−c)

�−N

2
, (9)

where dTV (·, ·) is the total variation distance between two
probability measures.�

Based on it, we derive Corollary 1, which further indicates
potential enhancement strategies by increasing the correlation
between observed representations and the target property.

Corollary 1: The upper bound of the distinguishing accu-
racy is a monotone increasing function about the posterior
probability of an observed representation owning the target
property.

Proof: Let f (x) =
p

1 − (1 + x)−N , where x =
q(c−t∗)
t∗(1−c) . Given

that t∗ is a constant and q is fixed, it is clear that as x increases,
the function f (x) also increases. We find the first derivative
of x with respect to c as follows:

∂x
∂c

=
qt∗ (1 − t∗)
[t∗ (1 − c)]2 > 0. (10)

Consequently, x monotonically increases with increasing c,
resulting in the increase of f (x).�

Theorem 1 presents an upper bound on the attack power
of an adversary who seeks to distinguish between two dis-
tributions, while Corollary 1 points out that the bound arises
with the conditional probability of an observed representation
owning the target property. It implies avenues for improving
the attack performance by controlling the correlation between
observed representations and target property. Motivated by
these insights, we present two enhancement approaches in the
following module.

C. Correlation Augmentation

Based on the theoretical evidence, we introduce label
replacement (LR) and model refinement (MR) in this module
for two adversarial cases C1 and C2. The core idea is that an
adversary transforms intermediate results into highly indicative
representations of the target property and intentionally ampli-
fies the disparity between the distributions of intermediate
results.

1) Label Replacement: Inspired by existing poisoning
attacks [15], [16], label replacement involves an attacker
substituting the original task label and thus infusing supervised
property information in the entire VFL system. Specifically,
an adversary acted by the active party, e.g., Pk, possesses
the capability to control label information. Before the VFL
training, it secretly replaces the task label yi with the property
label pi for each sample xk

i in auxiliary data, where pi = 1 if it
belongs to a property sample, otherwise pi = 0. Subsequently,
the VFL system undergoes supervised learning about the target
property, intensifying the association between intermediate
results and the target property.

This method does not need access to the top model’s
training since the label manipulation can be carried out inde-
pendently. Yet, only the active party with auxiliary data is
empowered to use this enhancement. In addition, since most
VFL systems are developed on extensive datasets, poisoning
a small fraction of training data has a negligible impact on
overall performance as demonstrated in our experiments later.

2) Model Refinement: Another approach to enhance the
effectiveness of PIAs is to induce the adversary’s bottom
model to leak more property information through supervised
learning and output constraints.
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During the training process, the adversary controls its
bottom model entirely. It at first adds randomly initialized
layers on top of the bottom model, and refines the bottom
model by learning supervised knowledge from auxiliary data.
Formally, an adversarial party Pk introduces a prediction layer
fθT with parameters θT . Using the intermediate output of
its bottom model as input, fθT is used to make decisions
for a binary property classification task. Then, the supervised
learning objective on the adversary party’s side is to minimize:

Ls =
1
|Daux|

X
(xk

i ,pi)∈Daux

`
�

fθT
�

fθk

�
xk

i

��
, pi
�
, (11)

where ` denotes as a loss function. By optimizing Ls, more
information related to the target properties is exposed to the
adversarial party.

Besides supervised property information, the difference
between intermediate results of property and non-property
samples is another factor for a successful PIA. Intuitively,
a wider distribution gap between property and non-property
samples results in easier property inference. To exaggerate this
distinction, we propose an output loss function for updating
the adversary’s bottom model as follows:

Lo = −
1
|Daux|

X
(xk

i ,pi)∈Daux

p′i


 fθk

�
xk

i

�


1 , (12)

where ‖·‖1 is the L1-norm function and p′i = −1 for a non-
property sample, and 0 otherwise. Lo increases the norm
value of property samples and suppresses the norm value
of non-property samples, making their intermediate output
distributions more dispersed.

Finally, by combining the aforementioned two loss func-
tions, the attacker aims to minimize the final objective function
as follows:

L = Ls + λ · Lo, (13)

where λ is a hyperparameter for balancing two terms. The
attacker’s bottom model is updated along with the optimization
process. Conventional optimization techniques like stochastic
gradient descent can be applied to solve the first term Ls.
Regarding the second term Lo, we follow previous work [45]
to optimize it and then update the adversary’s bottom model.

In summary, both LR and MR approaches benefit from
supervised learning, enhancing the representative capacity of
intermediate results regarding the target property. MR goes
further by making distribution gaps more distinguishing by
restricting the attacker’s bottom model outputs. Additionally,
MR operates across different adversary’s capacities, allowing
arbitrary parties in VFL, whether passive or active, to enhance
attack performance with the help of auxiliary data. Therefore,
for C1, we apply both MR and LR approaches simultaneously,
while for the C2 scenario, we utilize MR solely. We present
the complete attack pipeline involving the three modules in
Algorithm 2.

VI. EXPERIMENT

A. Experimental Setting

1) Datasets: As most of the datasets used in VFL research
are tabular type [7], we evaluate our attack on five popular
tabular datasets as follows:

1) Adult [46], [47]: The Adult dataset comprises 44,355
records of US census data. Following the exclusion of
final weight and duplicate entries, we frame a classifi-
cation task aimed at predicting whether an individual’s
salary exceeds $50,000. Within this dataset, we use sex,
race, and workclass as private attributes vulnerable to
potential inference attacks.

2) Census [16], [46]: As a repository of US census infor-
mation, the Census dataset offers greater depth than
the Adult dataset, comprising 299,285 records with 41
features. Similar to the Adult dataset, we utilize a binary
classifier trained on the Census data to predict whether
an individual’s income exceeds $50,000 annually.

3) Bankmk [16], [46]: The Bankmk dataset, also known
as Bank Marketing, comprises 45,211 records detailing
a banking institution’s marketing campaigns. A binary
classification model is trained on this dataset to forecast
whether a client has subscribed to a term deposit. In
this analysis, we designate month, marital, and contact
as private attributes.

4) Health: The Health dataset, called Health-Heritage,
encompasses over 60,000 medical records. In line with
prior research [19], we omit the Year and MemberID
attributes before utilizing it to train a binary classifier
aimed at predicting max CharIsonIndex. In this context,
we consider Sex and AgeAtFirstClaim as the target prop-
erties vulnerable to inference by potential adversaries.

5) Lawschool1 [48], [49]: The Lawschool dataset, sourced
from the Law School Admissions Council, comprises
96,584 records detailing various attributes of law stu-
dents, including gender, LAST score, and GPA, among
others. It constitutes a binary classification task to pre-
dict whether a student will secure admission. Within
this dataset, we designate race, resident, and gender as
attributes susceptible to inference.

6) Texas [50]: The Texas hospital dataset consists of inpa-
tient stay records collected from multiple healthcare
facilities, based on the Hospital Discharge Data from
2006 to 2009. It contains over 67,000 samples, each
represented by 6,169 binary features, and covers 100
output classes. The dataset is characterized by its high
dimensionality and extreme sparsity. In our experiments,
we consider two different attributes from this dataset as
target properties.

To simulate the VFL scenario, we evenly distribute the
feature space of training data to different parties by default.
Table III presents the statistic information and model utility
of various datasets in VFL.

2) Selection of Target Properties: Our experiments include
sixteen target properties across six datasets, all intrinsically

1https://www.kaggle.com/datasets/danofer/law-school-admissions-bar-
passage
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TABLE III
DATASET DESCRIPTION AND PERFORMANCE

TABLE IV

TARGET PROPERTIES CONSIDERED

private attributes such as gender, race, and age. Following
previous studies [16], we comprehensively explore various
fractions from small ratios (below 10%) to large ratios (above
50%), including binary and categorical attributes. Table IV
provides each sensitive attribute, the number of optional values
in the selected attribute, target property, true fraction, and
corresponding abbreviations.

3) Baseline: We choose AIA as our main baseline where
an adversary estimates property information by inferring the
specific value of the sensitive attribute and summarizing all
results [17], [51]. We adopt a three-layer neural network as
the binary classifier fed into intermediate results and make
decisions about the target property. The predicted fraction is
the ratio between the number of the predicted target property
and the scale of a training dataset. Additionally, we explore
other approaches, such as using the original training samples
as input in AIA and simulating shadow model-based PIA
within the VFL setting [15], [16], [27].

4) Model Architecture: Both the top and bottom models in
VFL are constructed with their own neural networks. They
utilize ReLU as the activation function and SGD as the
optimizer. Specifically, the top model incorporates Sigmoid
as its final layer and cross-entropy loss as its loss function.
The aggregation of all intermediate outputs from the bottom
models serves as the input for the top model. In our experi-

TABLE V

ATTACK PERFORMANCE (MAE) OF VARIOUS ATTACKS UNDER DIFFER-
ENT ADVERSARY’S CAPACITIES

ments, we mainly consider a two-party VFL while discussing
multi-party VFL settings in the ablation study. Besides, we
use XGBoost [52] as the default regression model.

5) Training and Attack Setting: For each dataset, we use
80% of data for training and the remaining 20% for testing
in VFL. By default, we set Daux with 2000 property samples
and 2000 non-property samples (i.e., 1.3%-9.0% of original
datasets). We configure the attack training set size |R| to 200,
the sampling size M to 2000, the fraction interval q to 1,
and the number of distribution queries Q to 100. We perform
PIAs in the penultimate epoch of the training process. All
experiments are reported on the average results of ten trials,
and the source code is available.2

6) Evaluation Metric: Following previous work [23], we
adopt mean absolute error (MAE) as the criteria to evaluate
the attack performance. It is the average absolute difference
between ground-truth fractions and predicted values. A lower
MAE value indicates stronger attack performance.

B. Experimental Results

We validate the effectiveness of ProVFL in two adversarial
cases: when the active party is the PIA adversary (C1) and
when one of passive parties acts the PIA adversary (C2) during
the VFL training process. For simplicity, we denote passive
attacks as ProVFL-B when the adversary solely employs DC
to infer target properties and active attacks as ProVFL-M
when the adversary maliciously adopts LR or MR to enhance
the performance of DC.

1) Performance of Passive Property Inference Attacks
Through Distribution Comparison: We first analyze the effec-
tiveness of DC from the attack performance of ProVFL-B in
both cases. Table V shows that ProVFL-B in C1 outperforms

2https://github.com/BaiLibl/ProVFL
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Fig. 4. L1-norm distribution of AO between property (D1) and non-property
samples (D0) on the A-sex property.

the baseline across all properties, significantly decreasing
MAEs by nearly an order of magnitude (2.2× to 42.6×).
Moreover, when employing AO solely in C2, ProVFL also
achieves lower MAEs among most target properties. We also
note that the baseline in C2 performs admirably, which results
from the attack features used in the baseline coincidentally
aligning well with the target property. Take L-sex as an
example. The baseline can construct a high-quality classifier,
achieving over 95% classification accuracy in practice. The
performance difference can be attributed to inherent moti-
vations: the baseline conducts inference at a record level,
whereas our method performs property inference from a
distribution-level perspective. Generally, it is easier to discern
differences within an entire subset than within individual
samples. Besides, when comparing ProVFL-B in different
adversarial scenarios, the adversary in C1 often achieves better
attack performance than in C2, especially in the Bankmk
dataset. It demonstrates that DC effectively combines distri-
bution information from different types of intermediate results
and thus achieves low inference errors.

2) Performance of Active Property Inference Attacks
Through Correlation Augmentation: When an adversarial
party adopts enhancement approaches, the inference estima-
tion errors can be further reduced. Table V shows that an
adversary party can achieve lower estimation errors for most
target properties when it uses LR and MR approaches in C1.
And for an adversary in C2, solely using the MR strategy
further decreases the inference errors of target properties by
1.2× to 3.4×. Although ProVFL-B performs better in some
properties, e.g., C-edu and H-sex, their differences are less
than 1% MAE. These results demonstrate that CA enhances
the performance of ProVFL-B and lowers inference errors
regardless of the adversary’s role. We also observe that
regarding target properties from Texas, although our proposed
method still outperforms the baselines, the improvement of
CA is less significant compared to other properties. This is
partly because, for multi-class samples, we only apply MR to
enhance the performance of ProVFL-B. Moreover, the number
of task classes is substantially larger than the number of target
attributes, resulting in limited supervised information being
embedded in the intermediate representations. Besides, when
comparing ProVFL-M in both cases, we observe that an adver-
sary with less adversarial knowledge in C2 can sometimes
achieve better attack performance, e.g., Adult dataset. We
conjecture that this is because MR intentionally makes the

TABLE VI

THE PERFORMANCE OF USING THE RAW FEATURES UNDER DIFFERENT
LEVELS OF CORRELATIONS

TABLE VII

ATTACK PERFORMANCE (ACCURACY) BETWEEN
SM-PIA AND PROVFL-B

TABLE VIII

ATTACK PERFORMANCE (MAE) AND UTILITY (AUC) ON MISALIGNED
AUXILIARY DATASETS

attacker’s AO more distinguishable and leads to significantly
less overlap between their L1-norm distributions, as shown in
Figure 4. However, such a difference may be reduced when
considering four types of intermediate results in C1.

3) Other Baselines: Apart from the AIA baseline above, we
additionally compare two possible methods with our ProVFL.
1) Using raw features rather intermediate results in AIA
(named AIA*): The raw features on the adversarial party’s side
can be used to deduce property information due to inherent
correlation. Similar to the baseline, we use these features as
the inputs of the binary classifier. Table VI presents the attack
performance, maximum correlation with the target property in
adversarial party’s features, and correlation with task labels
using Pearson correlation coefficient (PCC). Although there is
a high correlation, the AIA-based approach remains ineffective
for property inference on the Bankmk dataset, e.g., B-month.
In contrast, ProVFL demonstrates robustness by not relying
heavily on correlations with the task label or other attributes,
e.g., B-cont. 2) Shadow model-based PIA (named SM-PIA):
We attempt shadow model training methods [15], [16], [27]
by replicating the complete training process across the entire
feature space. We adapt it and ProVFL-B to distinguish two
predefined fraction values as shown in Table VII. As expected,
ProVFL-B effectively handles both distributions regardless
of the fraction gap, whereas SM-PIA fails to differentiate
between them. In fact, the SM-PIA method assumes that
an adversary has access to the full feature space, which is
impractical for a party limited to its own feature subset in VFL.

4) Relaxed Assumptions on Auxiliary Data: Our above
attacks are conducted under the assumption that auxiliary data
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Fig. 5. Impact of various settings in ProVFL-B.

are clean and aligned with other parties’ samples. We now
relax this assumption and discuss two general cases: 1) Noisy
auxiliary data: an adversary may use noisy samples to conduct
ProVFL, e.g., by using feature inference attacks [8], [9], [53]
to recover a handful of the victim’s records. As shown in
Figure 5a, we observe that for A-sex and H-age properties,
the inference errors increase as the noise scale rises, but as
for the other two properties, their attack performance remains
relatively stable. Overall, when 10% auxiliary samples are
mislabeled, the inference errors increase by 2%. It indicates
that ProVFL is robust for noisy auxiliary data and maintains
similar attack performance. 2) Misaligned auxiliary data: An
adversary cannot observe intermediate results during training if
their sample IDs do not overlap with those of VFL parties. To
simulate this scenario, we randomly replace the adversary’s
aligned training data with these samples prior to the VFL
process. Table VIII demonstrates that ProVFL can successfully
infer property information without significant performance
deterioration in this scenario. The above results suggest that
ProVFL remains robust and effective across different types of
auxiliary data.

5) Performance and Time Cost Analysis of LR and MR
Approaches: Table IX illustrates the attack performance and
model utility of different enhancement approaches in C1.
This suggests that neither LR nor MR plays a dominant
role in CA, yet utilizing both consistently enhances attack

TABLE IX
ATTACK PERFORMANCE (MAE) UNDER DIFFERENT CA STRATEGIES

TABLE X
AVERAGE TIME COST OF VARIOUS ATTACKS ON ADULT DATASET

TABLE XI
ATTACK PERFORMANCE (MAE) OF PROVFL-B AND AIA ON THE

NUS-WIDE DATASET FOR DIFFERENT TARGET PROPERTIES

performance without much loss of model utility. Addition-
ally, while CA introduces adjustments to VFL, it does not
significantly increase time costs, as shown in Table X. Vanilla
DC has a lower computational overhead than the baseline,
owing to its reliance on a regression model with small training
costs. Regarding the CA module, LR incurs negligible addi-
tional computational overhead for VFL training. Although MR
would require more time for the optimization process, the total
cost is still lower than the baseline.

6) Extension to Other Data Types: To validate the board
generalizability of our proposed method, we conduct experi-
ments on the multi-label image-text dataset NUS-WIDE [54],
which contains 634 low-level image features and 1,000 textual
tag features. Each type of feature is assigned to a sepa-
rate client. We focus on the top-5 most frequent labels in
our experiments. Unlike tabular data with structured feature
columns, image and text data are inherently high-dimensional
and unstructured. Therefore, we designate one type of label as
the target property and use the remaining labels as the learning
objectives for the VFL models. We perform our attacks on
both feature types using ProVFL-B in C2, with the adversary
holding image and text features, respectively. The results in
Table XI further demonstrate the effectiveness of our proposed
method across different data modalities.
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TABLE XII
IMPACT OF DIFFERENT Q ON ATTACK PERFORMANCE (MAE)

C. Ablation Study

In this section, we investigate the effects of different
hyperparameter settings on attack performance, including the
auxiliary dataset size |Daux|, the number of distribution query
Q, the attack epoch eS EC , the attack training set size R, the
fraction interval q, the architecture of regression models, and
multi-party VFL settings. Considering the active party as the
adversary, we delve into them in ProVFL-B across four target
properties with distinct fractions, ranging from a larger ratio
(e.g., A-sex: 66.21%) to a smaller one (e.g., H-age: 2.68%).

1) The Impact of Different |DAux|: DC depends on an
auxiliary dataset to prepare different populations of inter-
mediate results. Consequently, we examine it to discern its
impact on the attack’s effectiveness by varying the size of
the auxiliary dataset, as illustrated in Figure 5b. We observe
that increasing the number of auxiliary samples improves the
attack performance since the attack model can more effectively
capture the differences across property distributions with more
auxiliary samples.

2) The Impact of Different Q: We examine the effect
on estimation errors by adjusting the number of distribution
queries employed for inferring property information. Likewise,
we carry out our ablation study on different levels of target
properties in Figure 5c. In the beginning, as more queries
are conducted, the attack performance improves by reducing
the influence of outlier distributions randomly sampled from
the training set. However, this improvement diminishes with
further increases in the number of queries.

3) The Impact of Different eS EC: We now explore the
impact on attack performance by altering the epoch at which
an adversary executes a PIA, as depicted in Figure 5d. We find
a noticeable fluctuation when adversaries use intermediate out-
puts or gradients in the first several epochs. Nevertheless, the
attack performance stabilizes as the attack epoch progresses.
For instance, the MAE difference between two separate epochs
is approximately 0.01 after the 10th epoch. As the training
epoch progresses, intermediate gradients and intermediate out-
puts demonstrate stability as the model converges, especially
in the later stages of the training process. Hence, we suggest
adversaries conduct an inference attack during the late epochs
instead of at the beginning of training.

4) The Impact of Different R: We fix the size of the
auxiliary dataset at 4000 and vary the size of the attack
training set from 100 to 500. Figure 5e plots the corresponding
attack performance. Upon surpassing a set size of 400, the
improvement in attack performance becomes minimal. The
estimation errors among target properties fluctuate within 0.01.

5) The Impact of Different q: We adopt the default setting
of ProVFL-B in experiment settings but vary the interval of the

TABLE XIII
ATTACK PERFORMANCE (MAE) AMONG REGRESSION MODELS

TABLE XIV

IMPACT OF λ ON ATTACK PERFORMANCE (MAE) AND UTILITY (AUC)

TABLE XV

IMPACT OF NON-IID VFL SETTING ON ATTACK PERFORMANCE (MAE)

fraction candidate set. Table XII shows the attack performance
under different q settings. When the fraction interval is 1,
we can construct a distribution of appropriate granularity,
achieving the lowest inference error.

6) The Impact of Regression Models: Our previous exper-
iments employ an XGBoost as the attack model to infer
property information. Now, we explore others to understand
the effect of different regression models, including decision
tree regression (DTR) [55], linear regression (LNR) [56], and
support vector regression (SVR) [57]. Table XIII presents the
performance of three regression models on the Adult dataset.
It indicates that the non-linear XGBoost and DTR can more
effectively capture the alignment of L1-norm distribution and
property fractions.

7) The Impact of Different λ: We explore the changes in the
attack performance and VFL utility under different λ settings
when using MR strategy, as presented in Table XIV. Upon
introducing the MR module, our attacks demonstrate much
lower estimation errors on the Bankmk dataset. Although
a larger λ setting tends to improve attack performance, an
attacker has to balance the trade-off between property leakage
and model utility.

8) The Impact of Non-IID VFL Setting: The experiments
presented above were conducted under an even split of the
feature space among parties. We now extend our investigation
to non-IID feature distributions [58] and examine their impact
on the proposed methods. Specifically, we consider scenarios
where the feature space is unevenly partitioned, with different
parties holding varying numbers of features. We define r as
the ratio of the number of features held by the victim party to
that of the other party. Table XV shows that non-IID data in
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the feature space may reduce the property leakage, particularly
when the victim party holds a large number of features.

9) The Impact of Multi-Party VFL Setting: We present
the attack performance in the multi-party VFL setting on the
Census dataset due to its extensive feature space. Each party
is allocated an equal portion of feature space. As Figure 5f
shows, we present inference results on three target properties
in C1 and C2. We observe that estimation errors become lower
as the number of parties increases. This observation aligns with
an intuition that, with a fixed feature space, more parties result
in a smaller partial feature space, and the target property then
becomes more dominant in the victim party’s feature space.

VII. DEFENSE

In this section, we design several mechanisms to mitigate
property leakage during the VFL training process, including
common strategies as well as customized mitigation techniques
specifically against our framework. We validate the defense
performance against ProVFL-B in C1.

A. D1. Add Noises to Gradient

A typical defensive strategy to mitigate information leakage
in FL is adding noise into gradients [3], [20], [27]. In a
vertical case, a trusted third party can add Laplacian noise
to intermediate gradients before sending them to parties.
We set the noise scale as the hyperparameter to adjust the
effectiveness of this defense.

B. D2. Adopt Privacy-Preserving Deep Learning

Following [3], we adopt a hybrid defense framework
involving differential privacy [59], [60], [61] and gradient
compression to mitigate property leakage. The rG fraction of
intermediate gradients are processed in the training process. A
defender can vary rG to trade-off between defense performance
and model utility.

C. D3. Adopt Randomized Responses in Both Propagations

A recent state-of-the-art defense [31] for Split learning is
proposed to disrupt knowledge transfer in both directions
through a flexible, unified solution. It introduces a newly
designed activation function, named R3eLU, that transforms
private smashed data in the forward pass and partial loss in
the backward pass into randomized responses, respectively.
We consider the privacy budget ε as the hyperparameter in
our reproduction.

D. D4. Shuffle the Training Data

The correlation between intermediate results and a target
property is a key factor of information leakage. A possible
defense is to disrupt such a correlation by shuffling the
victim’s training data. Specifically, the victim party randomly
disorders some of his training data, which causes misalignment
between its property information and the attacker’s intermedi-
ate results. We treat the shuffling ratio of this mitigation as a
hyperparameter.

TABLE XVI

DEFENSE PERFORMANCE AGAINST PROVFL-B ON ADULT DATASET:
MAE VS. AUC TRADE-OFF

TABLE XVII

DEFENSE PERFORMANCE AGAINST PROVFL-B ON TEXAS DATASET:
MAE VS. ACCURACY TRADE-OFF

E. D5. Withdraw Aligned Data Before Training

This defense indirectly changes the training data accessed
by an adversarial party. After data index alignment, we can
process intersecting features to hide the true statistic informa-
tion of a sensitive attribute. To achieve this, the victim party
deliberately withdraws part of intersecting samples containing
the target property and thus changes its distribution in the
training process. We consider different withdrawal ratios to
validate its effectiveness.

We evaluate the above five mitigation mechanisms to defend
our proposed method, where an attacker utilizes his bottom
model and four kinds of intermediate results for property
inference. Table XVI presents the defense performance across
various configurations. D1 and D2 offer slight mitigation
against property leakage, accompanied by a clear degradation
in model utility. Although D3 significantly reduces property
leakage by simultaneously perturbing all intermediate results,
it results in substantial utility loss across various target proper-
ties. Furthermore, such defense becomes less effective or even
saturated as ε increases. Additionally, D4 proves ineffective
in safeguarding against ProVFL, as shuffling merely disrupts
alignment with the victim’s data without altering the overall
distribution of properties in the training set. As for D5, it
diminishes the effectiveness of ProVFL with a small impact
on model utility by removing property samples from aligned
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data, and thus alters the original property distribution. To
further validate the defensive performance of D5, we evaluate
it on a multi-classification task using the Texas dataset. As
shown in Table XVII, D5 effectively mitigates the performance
of ProVFL-B while incurring minimal loss in classification
accuracy.

This adjustment significantly weakens the adversary’s abil-
ity to infer property information, offering a straightforward yet
effective defense to safeguard sensitive private information.

VIII. CONCLUSION

VFL is a widely used framework in various applications, but
its distribution-level privacy leakage has not been thoroughly
explored. In this paper, we reveal the risk of property leakage
in VFL by introducing ProVFL, a novel framework designed
to perform property inference with low estimation errors.
ProVFL is based on the empirical observation that the Lp-
norm distribution of intermediate results unintentionally leaks
private property information to potential adversarial parties. To
address this issue, we first design a distribution comparison
method for property inference and analyze its effectiveness
from a theoretical standpoint. We further propose correlation
augmentation to enhance the leakage of property information.
Our experimental results demonstrate that ProVFL performs
effectively across various target properties, highlighting how
shared intermediate results in VFL can easily expose private
information. Additionally, we explore existing defenses against
such leakage and propose a simple yet effective mitigation
approach for our attacks. We hope this work provides valuable
insights into the protection of private statistical information in
VFL.
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