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Abstract

Machine learning models are often vulnerable to inference attacks that expose
sensitive information from their training data. Shadow model technique is com-
monly employed in such attacks, such as membership inference. However, the need
for a large number of shadow models leads to high computational costs, limiting
their practical applicability. Such inefficiency mainly stems from the independent
training and use of these shadow models. To address this issue, we present a novel
shadow pool training framework SHAPOOL, which constructs multiple shared
models and trains them jointly within a single process. In particular, we leverage
the Mixture-of-Experts mechanism as the shadow pool to interconnect individ-
ual models, enabling them to share some sub-networks and thereby improving
efficiency. To ensure the shared models closely resemble independent models
and serve as effective substitutes, we introduce three novel modules: path-choice
routing, pathway regularization, and pathway alignment. These modules guarantee
random data allocation for pathway learning, promote diversity among shared
models, and maintain consistency with target models. We evaluate SHAPOOL in
the context of various membership inference attacks and show that it significantly
reduces the computational cost of shadow model construction while maintaining
comparable attack performance.

1 Introduction

With the increase of machine learning models trained on sensitive personal data like facial images
and medical records, various inference attacks pose severe threats to them, such as inferring the
membership status of individual records (i.e., membership inference attacks) [1]], reconstructing
representative samples (i.e., model inversion attacks) [2], and uncovering statistical properties of the
training dataset (i.e., property inference attacks) [3|.

A common technique adopted in almost all such attacks is the shadow model technique, which
enables an adversary to train multiple models using the same architecture as the target model on
similar datasets. Recent works show it is very effective in membership inference [1} 4 5 6] and
property inference attacks [7, 18, 19, [10]. Typically, the number of shadow models determines the
quality of inference attacks. For example, to achieve high attack performance, this number is set to
256 and 100 in [S} 7], respectively. However, the high computational cost of training shadow models
has raised concerns [[L1}[12}[10]]. Several works based on shadow models attempt to address this
issue by optimizing this cost inside of their specific attack algorithms. For instance, QMIA [13]
focuses solely on non-member data to develop a quantile regression model, thereby eliminating the
need for shadow models from other distributions. RMIA [12] employs a pre-trained reference model
on population data to save the training cost for shadow models in non-member cases. SNAP [10]
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reduces the number of shadow models required by injecting poisoned samples that contain the target
properties of interest for property inference. However, since these methods are tightly coupled with
specific algorithms, they lack generalizability across different inference attacks.

In this paper, we address this problem from the perspective of shadow models themselves, that
is, training each shadow model independently is not efficient [, 9]]. Inspired by this, we present
SHAPOOL, a shadow pool training framework that constructs shared shadow models in a single
training process. Specifically, we leverage the popular Mixture-of-Experts (MoE) mechanism [14,
151 [16] to build the pool with multiple identical sub-networks (i.e., experts) during training, and then
generate shared models (i.e., activated pathways) as a substitute for conventional shadow models
during inference. However, a vanilla MoE may produce over-specialized, unstable, and under-trained
experts, which reduces the diversity of shared models, poorly resembles independent models, and
ultimately diminishes attack effectiveness. To overcome these challenges, we design three key
modules: pathway-choice routing, pathway regularization, and pathway alignment. The path-choice
routing strategy assigns inputs to specific pathways to ensure a randomized yet fixed data allocation
for pathway learning on top of stability and reliability. Pathway regularization aims to enhance the
diversity of shared models by enforcing orthogonality in the representation space of experts and
penalizing paired pathways with similar outputs. Lastly, pathway alignment is introduced to improve
consistency with independent models and mitigate generalization mismatches.

We conduct extensive experiments to evaluate SHAPOOL across various existing membership
inference attacks (MIAs) [5}[12]], demonstrating that it outperforms the conventional shadow models
in both attack performance and training efficiency. On one hand, in a resource-limited scenario
where only a limited number of shadow models can be trained [[17], shared models can enhance
the performance of existing attacks under a similar computational budget. On the other hand, in a
resource-abundant scenario such as data auditing and risk assessment [[18}[19], it achieves comparable
performance while significantly reducing the computational cost of the conventional way.

Overall, our contributions are as follows: (1) We present a novel shadow pool training framework. To
the best of our knowledge, this is the first work to enhance the efficiency of various inference attacks
from the perspective of the shadow model construction. (2) We propose utilizing the MoE mechanism
as a shadow pool to interconnect individual models, enabling them to share sub-networks and enhance
the overall training efficiency. (3) To ensure that shared models serve as effective substitutes, we
introduce three modules that guarantee specialized data allocation for pathway learning, promote
diversity among shared models, and ensure consistency with independent models. (4) Extensive
experiments demonstrate the effectiveness and efficiency of our proposed method compared to
conventional shadow models.

2 Preliminary

2.1 Shadow Model-based Inference Attacks

Shadow model technique is a widely-used approach for various inference attacks [} 14} 15 16} [7, I8}
9, [10]]. Typically, an adversary constructs n diverse shadow models { Mg, , ..., Mg, } to simulate
the behavior of the target model Mp. The i-th shadow model Mg, is often trained using the
same architecture as M on a similar auxiliary dataset D 4,, and provides attack training data and
corresponding ground-truth labels for the construction of the attack model .4. For example, in MIAs,
shadow models generate outputs (e.g., logits or confidence scores) along with their corresponding
membership labels (1 for member and 0 for non-member), which are then used to construct the attack
training dataset for A (e.g., a binary classifier) to predict membership status. The pseudocode for
shadow model-based inference attacks is provided in Appendix[A.T] where more related works are
discussed. To ensure effective inference attacks, a large number of shadow models are typically
required to capture the diversity and randomness inherent in the training data distribution [13]]. This
leads to considerable computational overhead, especially for large-scale models, thereby limiting the
practicality of shadow model-based attacks. In this paper, we introduce a novel training framework to
advance the efficiency of shadow model construction.



2.2 Mixture-of-Experts Mechanism

A vanilla MoE model consists of L expert layers, each containing M experts with identical network
structures and a router R. Given an input z, the output of an expert layer is computed as the
summation of the outputs from the top K experts selected by R:

h =Y R(z)-Ex(z), R(z) = TopK(G(z), K), (1)

where F is a learnable expert, G is a routing strategy based on trainable networks or heuristic
functions, and TopK(+, K) refers to the largest K values. With K = 1 and non-expert layers omitted,
we obtain an activated end-to-end network pathway, formally defined as a sequence of selected
experts across layers, i.e., { £}, Ejz, ..., BE}, where E} indicates that the i-th expert in the first layer
is activated and 1 < 4, j, k < M. A more detailed introduction to the MoE architecture can be found
in Appendix[A.2]

3 Analysis of Shadow Models

Ideally, an inference attack should be both effective (i.e., high inference accuracy) and efficient
(i.e., computationally cheap). We investigate which aspects of shadow models influence attack
effectiveness via a case study on MIA, providing guidance for optimizing their construction.

We at first introduce a simple approach, model augmentation [20, 21} 22| 23| 24], to accelerate
shadow model construction. For each trained shadow model, we generate an augmented version,
doubling the total number of shadow models while reducing the overall construction cost, detailed
in Appendix [B] Specifically, we use neural masking [23, 25] that randomly prunes the weights of a
base model’s parameters in fully connected (¥'C) or convolutional (Conv) layers with a predefined
probability p. However, unfortunately, those attacks with augmented models fall short of expectations
in Figure Next, we explore why augmented models are not effective from three perspectives:
consistency, diversity, and randomness.

AUC
5%

- ori
—=— ori

089 —— FC0.1

oss —— FC0.2

D08
o
o
5 i —e— FC0.1
S & ori —<— FC-0.2
Do —— FC0.1
=) — FC-0.2

Conv-0.05 Son- Conv-0.05 o010

Conv-0.08 Conv-0.08

Entrogy gain

64 64

4 3 16 32 : o o PA 3 16 32
# of Shadow Models (n) # of Shadow Models # of Shadow Models
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Figure 1: (a): Attack performance and (b-d): Factors of shadow models. We evaluate augmented
shadow models on LiRA [5]]. ori denotes attacks using conventional shadow models. FC-p (or Conv-
p) denotes attacks with augmented models created via neural masking applied to fully connected
layers (or convolutional layers). A larger probability p indicates more perturbation in the model
weights. s denotes the number of distinct training subsets used for conventional shadow models.

Factor @: Consistency with the target model. Shadow models aim to replicate the behavior of the
target model and have similar generalization capabilities [26]. Therefore, we consider the consistency
between shadow and target models by their output distributions. We fit training data logits on
shadow models to a Gaussian distribution and measure their overlap with the target model using
the Bhattacharyya coefficient. Figure shows that such consistency is dependent on the specific
construction method. Moreover, the level of consistency strongly influences attack performance: the
lower the consistency, the weaker the attack performance, e.g., Conv-0.05 and Conv-0.08 cases.

Factor @: Diversity of shadow models. We further examine how the diversity of shadow models
influences the success of inference attacks on F'C-p. To validate this, we measure the diversity of
shadow models using their output entropy and report the entropy gain from adding more models
(starting with 4 shadow models) in Figure We find that although more augmented models are
used in FC-p, their diversity increases less than that of conventional shadow models. In other words,



they offer limited additional information to the subsequent attack model, resulting in only marginal
improvements in attack effectiveness.

Factor ®: Randomness of training subsets. Since augmented shadow models are statically con-
structed and share the same training subsets as the original models, we turn to the distribution of
these subsets to explain attack effectiveness. For n shadow models, we randomly construct s distinct
training subsets from the auxiliary data. When n > s, multiple models are trained on the same subset.
Figure |1(d)[ shows that using totally unique training subsets achieves the best attack performance.
Distinct training allocations enable shadow models to better capture randomness in data distribution,
thereby enhancing inference attack effectiveness.

Summary: The above analysis suggests that effective shadow models should capture the randomness
inherent in both the training process and the training data. The former necessitates consistency
with the target model while ensuring diversity among shadow models, whereas the latter focuses on
distinct training subsets. These principles inspire us to design a new shadow model construction
algorithm as follows.

4 Methodology

Our goal is to improve the efficiency of shadow model construction. As a fundamental component
of inference attacks, our threat models are aligned with specific attack settings. Existing inference
attacks [}, 5, [10] typically assume that the adversary knows (1) the training algorithm 7, e.g., the
network architecture and loss function of the target model, enables the training of a similar model
from scratch on datasets of the adversary’s choice; (2) an auxiliary dataset from the same distribution,
which may or may not overlap with the target dataset. Therefore, building on above assumptions,
we address the efficiency issue of shadow model construction by proposing a shadow pool training
framework, SHAPOOL.

4.1 Motivation & Challenges

Shadow models account for a large proportion of the computational overhead in inference attacks,
as each model is trained and operates independently, causing the cost to scale significantly with
the number of shadow models. To address this issue, we construct shared models that are trained
jointly within a single process. The advantage lies in the reuse of sub-networks across models, which
significantly enhances construction efficiency.

Specifically, we utilize the MoE mechanism [14} 27, 28] to construct a shadow pool of shared models
for inference attacks, as it offers two benefits as follows: (1) Well-suited structure: An end-to-end
activated pathway in MoE can be equivalent to a shadow model of an identical architecture, which
allows us to create a large number of shared models as potential substitutes. Theoretically, an MoE
model with L layers, each containing M experts, can form up to M unique pathways. (2) Training
efficiency: The sparse activation in MoE effectively scales model parameters without proportionally
increasing computational demands [29]. This design enables the reuse of trained experts across
different activated pathways, thereby improving the overall training efficiency of the shared models.
However, it is non-trivial to adapt a vanilla MoE to construct the shadow pool due to the following
challenges:

Challenge 1: Routing Specialization and Fluctuation. Existing routing strategies assign each input
to the most suitable experts during inference [27, 130], which creates an over-specialized mapping
between inputs and pathways. Such specialization not only hinders the ability to capture diverse
model behaviors on identical inputs [3]], but also results in insufficient randomness of training
data distribution across pathways, violating Factor ®. Moreover, the routing fluctuation effect in
MoE [31]], where the target expert for the same input can change during training, leads to unstable
and overlapping usage of training data across pathways.

Challenge 2: Similar Pathways. Although randomness in the training process, such as weight
initialization, mini-batch SGD, and random routing [32], allows variations in expert performance,
shared experts across multiple pathways may still lead to similar behaviors, violating Factor @. In an
extreme case, only a pair of experts differ between two highly overlapping pathways. Such similarity
leads to redundant and under-informative shared models for subsequent inference attacks.



Challenge 3: Generalization Mismatch. The end-to-end activated pathways exhibit varying degrees
of generalization compared to models trained independently, thereby violating Factor @, as shown
in Appendix Figure [5(a)] For each pathway in MoE, the training data is typically much smaller
compared to that of independently trained models, which leads to some experts being under-trained.
On the other hand, the sharing mechanism affects the extent of overfitting in individual pathways.

4.2 SHAPOOL: MoE-based Shadow Pool Training Framework

To overcome above challenges, we propose SHAPOOL, an MoE-based shadow pool training frame-
work, where activated pathways serve as effective substitutes for independently trained shadow
models. As shown in Figure 2(a)] it includes three modules, pathway-choice routing, pathway
regularization, and pathway alignment, to maintain similar effectiveness and reduce the computa-
tional cost of the construction. For clarity, we use the terms "activated pathway’ and ’shared model’
interchangeably throughout this paper.
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Figure 2: (a) Solid lines represent hard connections within shadow models, while dotted lines
indicate soft connections across experts in MoE. (b) The sub-networks in orange denote an activated
pathway, while those in blue indicate a reference pathway.

Module 1: Pathway-choice Routing. To deal with routing specialization and fluctuation, i.e.,
Challenge 1, we propose a pathway-choice routing strategy, which routes each input to fixed but
randomly selected pathways and activates only one expert per layer during training and inference.
This design enables us to maintain stable correlations between activated pathways and inputs, as well
as to ensure a distinct data allocation for pathway learning.

We implement this pathway-choice routing strategy by establishing a hard mapping between pathways
and disjoint training subsets. Given an MoE model with L layers and M experts per layer, we first

enumerate all possible pathways as a set {Pw}ﬂﬁl where P, C RE denotes the indices of activated

experts in this pathway. Given a training set D;,., we define B C RIPerIxM “asa binary mapping
matrix, where each element B; ,, indicates whether the w-th pathway is updated by the input x; from
the training set (1 for update, 0 otherwise). Formally, our pathway-choice router of the I-th layer for
the w-th pathway is defined as

R(zs;w,l) = Biw - Lp,, [1]=4] )

where 1p 1= is an M -dimensional binary vector indicating which expert is activated at the layer
for the w-th pathway. Then, the output of the [-th expert layer is formulated as:

h=R(zi;w,l) - B(z;). 3)

E(z;) represents an output matrix of all experts, where each row refers to the output of a single
expert for the input x;. We establish a random yet stable assignment between experts and inputs by a
mapping matrix B. By controlling the overlap of data points across pathways, we ensure distinct
training subsets for shared models and capture randomness in data distribution.

Module 2: Pathway Regularization. SHAPOOL leverages pathway regularization to improve the
diversity of shared shadow models to address Challenge 2. The core idea is to constrain the outputs
of experts and produce diverse model predictions for the same input. We enforce the constraint on
activated pathways by introducing two loss terms: similarity regularizer and orthogonal regularizer.
Inspired by contrastive learning [33}134], SHAPOOL activates a pair of pathways in each iteration
instead of a single pathway to enhance their differences. During training, we randomly select



an additional pathway as a reference and update the model parameters of the activated pathway.
Figure illustrates one iteration of the training process for an input.

We first work on the issue of redundant model outputs from different pathways in SHAPOOL. Since
model outputs are a key component in various inference attacks, particularly against black-box
models [1} 9], we introduce a similarity regularizer to control the alignment of output probability
among pathways. Let p = f(z; P) denote the prediction probabilities of an MoE model f, where a
set of experts along the pathway P are activated. As shown in Figure given that two pathways
are activated in one iteration, their prediction probabilities are represented as p; = f(z; Py) and py =
f(x; Py), where P, = {...,E\"  EY EYTY . Y and P, = {...,EY"Y EL ELTY .} respectively.
We use the Kullback—Leibler (KL) divergence to measure the similarity of the output distributions
between pairwise pathways [32]]. The similarity regularizer L is defined as the negative average of
two KL divergence terms calculated from the prediction probabilities, as follows:

Lsr(p1;p2) = —%(KL(MHP?) + K L(p2||p1))- “4)

We further introduce an orthogonal regularizer to eliminate feature correlation of experts within a
single layer. This is important in extreme cases where a pair of activated pathways share all but
one expert, leading to highly similar predictions for the same inputs. To address this issue, a strong
constraint is imposed from the perspective of expert outputs to enhance their misalignment. In
particular, we turn to orthogonal regularization [35}136,[37] to improve the orthogonality effect in the
representation spaces of experts. Rather than using common weight initialization methods, which
may exhibit uncertain orthogonality in the convolutional layer [38]] and impose overly stringent
constraints [35], we apply the regularizer directly to the outputs of the experts and make their
representation space as orthogonal as possible. Let 1 and Hy denote two sets of internal activations
given a pair of pathways, respectively. We define the orthogonal regularizer Lo g as the sum of the
pairwise inner products of the outputs from activated experts across all layers, formally expressed as:

L
Lor(Hy; Hy) :Z‘hi-h@-(x)u, )
=1
where Al and hé- are the outputs of activated experts in the [-th layer for P, and P, respectively.
Together with the commonly-used cross-entropy loss £ for model accuracy objective, the entire
training objective of SHAPOOL with respect to a training sample (x, y) is to minimize:

L =Lcr(p1;y) + alsr(pi;p2) + BLor(Hi; Ha). (6)

The hyperparameters « and ( are introduced to balance model utility and the diversity strength of
two regularization terms. The training objective in Eq.(6) forces all experts to minimize training
accuracy errors while maximizing the diversity of their predictions.

Module 3: Pathway Alignment. Challenge 3 points out that shared models in MoE tend to misalign
with independent models in terms of generalization. Consequently, this mismatch fails to mimic the
behaviors of the target model and degrades the performance of inference attacks. To address this issue,
we aim to drive under-trained experts toward the performance of well-trained ones. The core idea
is to enhance the memorization capacity of these activated pathways and align their behaviors with
those of independent models across different data distributions, through a key module in SHAPOOL
termed pathway alignment.

We leverage the commonly used fine-tuning technique to achieve this alignment. A simple approach
is to update specific layers of a pre-trained model while keeping the remaining weights frozen [39,40].
Similarly, we update the model parameters along the activated pathway using a small dataset D,
randomly sampled from D, (around 10%). Specifically, after Modules 1 and 2, we randomly select
n pathways from the pre-trained MoE model f and fine-tune them on D, by minimizing Lcg. We
reuse a portion of samples from the overall training set Dy, to enrich the data available to each
pathway, since each is initially trained on a considerably smaller subset compared to independent
shadow models. These selected pathways are further trained on more examples, making their behavior
more similar to that of a conventional shadow model and effectively reducing the mismatch with the
target model, as illustrated in in Appendix Figure [5(b)]

The Complete Algorithm: We present the pseudocode for SHAPOOL in Appendix, a specialized
MoE model designed for the shadow model construction problem, where activated pathways can
replace conventional shadow models in various attacks. Prior to MoE training, we randomly assign



training data to different pathways and record the mapping between each input and its corresponding
activated pathway. During training, we promote diversity and informativeness among shared models
by regulating pairwise pathway similarity via Eq.(6). Finally, the pathway alignment module post-
processes the trained pathways to align their behaviors with those of independently trained models
across both training and test data distributions. Last but not least, similar to the shadow model
technique, to learn more different aspects in both data distribution and the training process, we
can develop multiple independent shadow pools, each providing some shared models for inference
attacks.

5 Evaluation

This section conducts a comprehensive evaluation of SHAPOOL, demonstrating its effectiveness and
efficiency across existing inference attacks under two distinct scenarios: (1) Resource-Constrained
Scenario: There is a limit to training only a small number of shadow models, such as online inference
attacks [[17]. In this case, our goal is to enhance the effectiveness of existing attacks while consuming
the same or similar amount of computational resources. (2) Resource-Unconstrained Scenario: There
are no explicit cost constraints, allowing for a large number of shadow models, such as offline data
auditing or model vulnerability analysis [[18,|19]]. We aim to maintain comparable attack performance
while significantly improving computational efficiency.

5.1 Experiment Settings

Datasets and Models. Our evaluation is conducted on three benchmark datasets: CIFAR100 [41]],
CIFARI1O0 [41] and CINIC10, and three typical network architectures: ResNet18 [42]], VGG16 [43],
and WideResNet28-10 [44]). For the configuration of SHAPOOL, we set the number of expert layers
L to 4 (3 for WideResNet28-10), the number of experts M to 4, and the number of shared models n
to 64. Detailed settings are provided in Appendix[C.1]

Evaluation Protocol and Baseline. A shadow model-based inference attack pipeline generally
consists of three stages: shadow model construction, attack model construction, and inference
execution. We consider the conventional shadow model construction approach as the baseline
(denoted by BASE), where each shadow model is independently trained on a randomly sampled
subset of auxiliary data. Our proposed framework replaces the shadow model construction stage with
shared models from the pool, while the other two stages remain unchanged.

Attack Setup. Following [, (5 [12] 451 46]], we assume that an adversary knows the target model’s
network structure and possesses shadow datasets similar to the target data distribution. We evaluate
the effectiveness of SHAPOOL by integrating it into two shadow model-based MIAs: LiRA [3]]
and RMIA [12]], replacing their original shadow model construction. Each method is evaluated
in both offline and online modes; the latter generally offers better performance but incurs higher
computational cost. Further details are available in Appendix [C.2]

Evaluation Metrics. Following existing MIAs [3, 24} 47], we adopt two evaluation metrics as
performance indicators, i.e., Area Under the ROC Curve (AUC) and True Positive Rate (TPR) at
low False Positive Rate (FPR). As for computational costs, we present the wall-clock time (in hours)
required for shadow model construction, along with the corresponding percentage reduction in
runtime. We report the average results over five independent runs with different random seeds and
and release the source code at https://github.com/Bailibl/ShadowPool.git,

5.2 Main Results

We evaluate the effectiveness of SHAPOOL in two different scenarios, followed by an investigation
into how its several components contribute to the overall attack performance.

Inference Attacks under Low Computation Budget. We first analyze the performance of inference
attacks under low computational resources, i.e., using a small number of shadow models. To achieve
a similar cost, we use one shadow pool for SHAPOOL, while BASE uses four shadow models for
LiRA-online and two shadow models for LiRA-offline. SHAPOOL removes pathway regularization
and uses only a few fine-tuning epochs when conducting LiRA-offline. Detailed settings are provided
in Appendix Table [1| compares the attack performance of different construction methods.
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Table 1: Attack performance and computational cost of LiRA under the constrained resource. We use
= to represent changes in the attack performance smaller than 0.02 and TF1 to denote TPR@FPR=1%.

RESNETI18 VGG16 WIDERESNET28-10
DATASET ‘ METHOD ‘ AUC TFI  CosT | AUC TFI  CosT | AUC TFI  CosT
LIRA-OFFLINE ATTACK
BASE 0.73 0.22 0.5 0.69 0.16 0.4 0.76 0.30 2.4
CIFAR100 | SHAPOOL | 0.82 0.32 0.4 0.76 0.17 0.5 0.81 0.27 1.9
A +0.09 +0.10 - +0.07 = - +0.05 -0.03 -
BASE 0.51 0.06 0.5 0.56 0.04 0.4 0.55 0.08 2.2
CIFARI10 SHAPOOL | 0.63 0.09 0.5 0.64 0.09 0.4 0.60 0.08 1.6
A +0.12  +0.03 - +0.08 +0.05 - +0.05 = -
LIRA-ONLINE ATTACK
BASE 0.90 0.34 1.0 0.86 0.25 0.9 0.90 0.36 3.6
CIFAR100 | SHAPOOL | 0.92 0.42 1.0 0.88 0.25 0.9 0.91 0.42 3.4
A +0.02  +0.08 - +0.02 = - = +0.06 -
BASE 0.69 0.11 1.0 0.67 0.07 0.9 0.67 0.09 4.4
CIFAR10 SHAPOOL | 0.71 0.11 1.0 0.69 0.10 1.2 0.69 0.12 4.5
A +0.02 = - +0.02  +0.03 - +0.02  +0.03 -

Table 2: Attack performance and computational cost of LiRA under the unconstrained resource.

DATASET METHOD RESNET18 VGG16 WIDERESNET28-10
AUC TF1 CosT | AUC TFI CosT | AUC TFI1 CosT
LIRA-OFFLINE ATTACK
BASE 0.81 0.36 15.4 0.72 0.25 12.1 0.77 0.37 76.8
CIFAR100 | SHAPOOL | 0.84 0.37 1.6 0.78 0.21 2.0 0.82 036 7.7
A +0.03 = 190% | +0.06 -0.04 | 84% | +0.05 = 190%
BASE 0.57 0.11 16.8 0.54 0.06 13.7 0.56 0.09 70.8
CIFAR10 SHAPOOL | 0.63 0.13 1.9 0.65 0.10 1.6 0.61 0.09 6.4
A +0.06 +0.02 | 89% | +0.11 +0.03 | 88% | +0.05 = 191%
LIRA-ONLINE ATTACK
BASE 0.95 0.55 30.7 0.90 0.36 24.3 0.93 0.50 153.6
CIFAR100 | SHAPOOL | 0.94 0.53 3.9 0.89 0.31 3.1 0.92 0.48 14.5
A = -0.02 |87% | = -0.05 |88% | = -0.02 |91%
BASE 0.71 0.16 33.7 0.71 0.14 27.5 0.71 0.13 141.6
CIFAR10 SHAPOOL | 0.70 0.14 4.0 0.69 0.13 4.8 0.70 0.13 18.1
A = -0.02 | 88% | -0.02 = 182% | = = 1 87%

Overall, SHAPOOL demonstrates superior performance in most cases across various settings. For
instance, SHAPOOL improves AUC by 5%—12% in LiRA-offline and by around 2% in LiRA-online,
respectively. We also observe a relatively modest improvement on the WideResNet28-10 network
compared to the other network types, attributed to its fewer expert layers and less diverse shared
models. Besides, SHAPOOL shows a more significant improvement in LiR A-offline across evaluation
metrics than in LiRA-online. This difference arises because the former attack is less sensitive to
the output distribution of shadow models. these results indicate that SHAPOOL enhances inference
attack performance by replacing independent shadow models with more shared models under similar
computational cost.

Ultimate Performance of Inference Attacks. We then evaluate the attack power when a large
number of conventional shadow models can be trained. This scenario aims to validate SHAPOOL’s
training efficiency and ultimate attack performance. Following previous settings [5, 47, we prepare
128 shadow models for LiRA-online (half IN and half OUT) and 64 for LiRA-offline (all OUT).
In this case, we construct four shadow pools, each randomly sampling 64 pathways as shared
models. Table [2] presents the attack performance and computational cost across different settings.
First, for the LiRA-offline attack, our proposed method outperforms the baseline as the size of the
shadow pools increases, mostly achieving higher attack performance while significantly reducing
the computational cost of conventional shadow model training by an average of 88.6%. Regarding
LiRA-online MIA, SHAPOOL achieves comparable performance in terms of AUC, with a slight
reduction in TPR@FPR=1%. This is attributed to the high sensitivity and limited robustness of
the online mode to the behavior of shadow models on the training data distribution [5]]. Overall,
our SHAPOOL framework improves the efficiency of shadow model training by approximately



Table 3: Attack performance and computational cost of RMIA. Table 4: Loss terms.

Method ‘ RMIA-offline H RMIA-online Lcg Lsr Lor | AUC  TF1
AUC TFl TFOl Cost || AUC TFlI TFOl  Cost % 083 033

BASE | 094 053 044 75 || 094 053 040 160 v 084 036
SHAPOOL | 0.93 052 042 18 [/ 093 053 039 40 v v [ 087 039
A = = = 1% = = 002 175% v v | 087 042

7.7x compared to BASE on LiRA. Apart from CIFAR10 and CIFAR100, we further validate the
performance of SHAPOOL on CINIC10 in Appendix [C.3]

Performance on Different Attacks. To further validate the board applicability of SHAPOOL
across different attacks, we report experimental results on RMIA using ResNet18 and CIFAR100,
evaluating AUC, TPR@FPR=1% (TF1), and TPR@FPR=0.1% (TFO1) under the unconstrained
setting. Specifically, we compare the performance of the original RMIA using 64 independent
shadow models with its enhanced version that utilizes shared models from four shadow pools.
Table [3|demonstrates that unlike previous methods tailored to specific attack strategies, our approach
generalizes across different inference attacks with improved efficiency and adaptability. Moreover,
beyond MIAs, we extend our method to PIAs, as detailed in Appendix [C.4} further demonstrating its
effectiveness and efficiency.

5.3 Ablation Study

We investigate how various components in SHAPOOL collectively achieve comparable attack perfor-
mance using CIFAR100 and ResNet18.
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Figure 3: Hyperparameter settings on the LiRA-offline using ResNet18 and CIFAR100.

Number of Shared Models. We evaluate the impact of the number of shared models sampled from
the shadow pool on attack performance. We test LiRA-offline attacks using four different numbers
of shadow models: 8, 16, 32, and 64, using CIFAR100 and ResNet18. Figure @] illustrates a
slight performance improvement in both AUC and TPR @FPR=1% as the number of shared models
increases; however, this effect diminishes when the number exceeds 32, indicating that while a
shadow pool can provide numerous potential shared models, their effectiveness is ultimately limited.

Number of Shadow Pools. To approximate the ultimate attack performance, we build multiple
shadow pools for shared models in the above experiments. Here, we examine the impact of varying
the number of shadow pools on attack performance, ranging from 1 to 4. Figure [3(b)| shows that
increasing the number of shadow pools improves both evaluation metrics, especially a more noticeable
effect on TPR@FPR=1%. This upward trend suggests that SHAPOOL has the potential to further
enhance attack performance beyond the results reported in Tables 2] and [3]

Training Objective. Path regularization employs a specialized training objective to enhance the
diversity of shared models. Here, we examine the relative contributions of its loss terms: Lo, LR,
and Lo g. The results in TableE]indicate that Lo g plays a crucial role in attack performance, whereas
adding Lgp results in only a slight improvement in AUC and TPR@FPR=1%, as Lo r imposes a
more direct restriction on the experts.

Regularization Strength. We further investigate the impact of the regularization strengths o and 3.
To control the experiment, we set the other hyperparameter to zero when testing either one. Regarding
the hyperparameter «, Figure demonstrates that the attack performance remains stable as long as
« is not very large (e.g., @ < 0.05). And £ has a similar effect on attack performance in Figure 3(d)]



As such, in our experiments, we set it to a value smaller than 0.01. The two regularizers positively
influence attack performance when setting their contribution to an appropriate scale. Due to space
limitations, additional results under various settings are provided in Appendix [C.3]

6 Discussion

Broader Impacts. This paper advances our understanding of inference attacks in machine learning
models. We take a new perspective on investigating the construction of shadow models. By adopting
MoE-based shared model training, we not only accelerate the construction but also enhance the
effectiveness of these shadow models for inference attacks. Our proposed framework offers model
publishers or data owners an efficient tool to audit and assess potential privacy risks when publishing
a model or a model service.

Limitations. We improve the efficiency of shadow model construction by introducing an MoE-
based shadow pool, where activated pathways serve as substitutes for conventional shadow models.
However, this approach requires adapting the shadow model architecture to the MoE framework,
entailing network architectural modifications. Furthermore, due to the increased number of parameters
in MokE, the proposed method is more effective when the adversary possesses a sufficient amount of
auxiliary data; its performance may degrade in low-data attack scenarios.

7 Conclusion

Targeting the efficiency bottleneck of shadow model construction, a core component of inference
attacks, we propose an attack-agnostic solution to address this issue. Instead of independently training
shadow models in a conventional manner, we construct a large number of shared models and train
them jointly within a single process using the MoE mechanism. While this reuse of sub-networks
improves the construction efficiency, dependent shadow models may negatively impact the attack
performance. We propose three enhancement modules to address these issues and enable shared
models from the pool to serve as effective substitutes. Our approach replaces conventional shadow
models with shared models, significantly reducing construction costs while preserving competitive
attack performance across various datasets. Moreover, it can be seamlessly integrated into a wide
range of inference attacks. Future work can explore refined parameter-sharing strategies to further
balance attack efficiency and effectiveness. Additionally, adaptive shadow model training mechanisms
remain an interesting direction.
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Appendices

Algorithm 1: Shadow Model-based Inference Attacks

Input: Training algorithm 7, Target model M, Auxiliary dataset D 4, Query examples @, Attack
algorithm 7.

Output: Inferred secret s’.

// Shadow Model Construction

Construct shadow training subsets Da,, D a,, ..., D a,, randomly sample from D4 ;

fori=1,71 < M do

| Train a shadow model Ms, <+ T(Da,);

end

// Attack Model Construction

Dot < 0;

fori=1;1 < M do
(Da,;,s:) + Ms,(Da,); // si: ground-truth secret, e.g., membership status
Datt < Datt U (Da,, 8:);

end

Train an attack model A < 77 (Dqst);

// Inference Attack

'+ A(Mr(Q)):

return s’;

A Related Work

A.1 Shadow Model-based Inference Attacks

The shadow model training technique aims to mimic the behavior of the target model by preparing
shadow models with the same network architecture on similar datasets, which provides the ground
truth of inference results and outputs for the meta-classifiers used in inference attacks [1} 4} 48 9} [10],
as outlined in Algorithm[I] Several popular inference attacks highlight the versatility of this technique.
For instance, shadow model-based membership inference attacks leverage shadow models to construct
binary inference classifiers or hypothesis tests [[1,15]. Similarly, property inference attacks [9} (10} 149]
use shadow models to build meta-classifiers that reveal sensitive property information in property
inference attacks. Moreover, in advanced model inversion attacks [50], shadow model training
facilitates the joint supervised training of the encoder and decoder with the collection of shadow-
target model pairs.

Current research on shadow models mainly examines their training setup in relation to the target
model, focusing on factors such as employing an identical network architecture [51} 6] and analyzing
the effects of varying shadow training data distributions [11} 16} 5]]. Departing from this focus, we aim
to explore advanced methods for shadow model construction and enhance the attack efficiency of
shadow model-based inference attacks.
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Figure 4: Example of a vallina MoE. For simplicity, non-expert layers are omitted here. An activated

end-to-end pathway, highlighted in blue, is formed by the experts selected through the input-dependent
routing function R, along with the fixed non-expert layers.



A.2 Mixture of Experts

As a special instance of conditional computation [[15,[16], sparsely-gated MoE [14, 28} 27,130,152, 153|
54| contains a group of identical sub-networks (i.e., experts) and makes input-dependent predictions
according to the choices of experts. It increases model parameters while maintaining a similar
computational cost per example during inference, powering kinds of Al domains, including multi-task
learning [[14} 28], NLP [27,30], and computer vision [52| 53} 154]. For simplicity, we refer to it as
MOoE moving forward.

Let first introduce a vanilla MoE model consisting of L expert layers, each containing M experts with
identical network structures and a router R, as illustrated in Figure ] Given an input z, the output of
an expert layer is computed as the summation of the outputs from the top K experts selected by R:

h=> R(z)- Ex(z), R(z) = TopK(G(z), K), )
k=1

where F is a learnable expert (i.e., sub-network), G is a routing strategy based on trainable networks
or heuristic functions and TopK(-, K) refers to selecting the largest K values with the remaining
values set to zero. Figure @ illustrates an iteration of the MoE training process.

Key research on MoE models focuses on effective routing strategies that navigate inputs to the most
suitable experts and achieve expert load balance 55,156,157, [16]. The mainstream approach, known
as the input-choice routing strategy, assigns each input to one or more experts. For example, Switch
Transformers [S7]] uses a softmax layer to select the top expert for each example. Similarly, Base
Layers [56] employ a linear assignment function to allocate tokens to experts. Hash Layer [58]
utilizes hashing to assign input tokens to experts, whereas THOR [32] activates experts randomly for
each input. Alternatively, rather than selecting one or two top-scoring experts for each input, [55]]
allows each expert to pick the top-k inputs, ensuring perfect load balancing. Unlike previous works
focused on the MoE mechanism itself, our goal is to extend it to shadow model construction and
reduce the high computational cost of inference attacks.

B Case Study: Model Augmentation-based Shadow Models

Model augmentation introduces variations in data, architectures, or training procedures to enhance
machine learning models, improving generalization and robustness. Techniques such as dropout
and data augmentation have been widely used for ensemble learning [20], continual learning [21],
adversarial attacks [22} 23] [24], and so on. Neural masking [25} 23] is a typical model augmentation
approach, which randomly prunes the weight of model parameters of a base model W with a
probability of p. The resulting weights of an augmented model W4 are computed as follows:

Waug - Wf ® (1 - f(vap)) (8)

where 1 denotes the all-ones matrix with the same size as the weight of the base model, ® represents
the Hadamard product that performs element-wise multiplication on the weights, and & refers to a
specific augmentation technique.

Model augmentation provides an alternative approach to generating multiple augmented models
derived from a base network. These augmented models are post-processed variations of the base
network, which are not stored or trained, thus reducing the overall cost of shadow model construction.
Specifically, we employ neural masking to enlarge the set of trained shadow models for inference
attacks by scaling model weights and generating diverse augmented models.

We explore varying levels of weight modification by focusing on either the fully connected layers
(i.e., FC-p) or the convolutional layers (i.e., Conv-p). We target the last fully connected layers,
closest to the model outputs and are commonly utilized in various inference attacks [} 9} 10} 126 59].
Conversely, pruning weights in the convolutional layers proves advantageous due to its impact on a
larger number of weights, resulting in more diverse augmented models. For example, in ResNet18,
the last fully connected layer accounts for only 0.46% of the parameters, while the convolutional
layers comprise approximately 99%.

We evaluate different augmentation settings on an MIA, LiRA [5]], using CIFAR100 and ResNet18.
To ensure the augmented models remain close to the base network while preserving similar generative
capacity, we carefully adjust the scale of weight modifications, constraining the test error loss to
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2 Enumerate all possible pathways { P, }

within 10%. For this, we set thresholds of 0.1 and 0.2 for FC and 0.05 and 0.08 for Conv. We start by
constructing base shadow models in quantities of 4, 8, 16, 32, and 64, then generate one augmented
model for each base model, as outlined in Algorithm E} As a result, the total number of shadow
models doubles after augmentation for Conv-p and FC-p.

Algorithm 2: Model Augmentation-based Shadow Model Construction
Input: Training algorithm 7, Auxiliary dataset D 4, Augmentation algorithm Aug.
Output: Shadow models { M, , Mg, M
Construct shadow training subsets D4, Day, ..., DAM randomly sample from D 4 ;
fori =1;1 < M do
Train base model M5, < T(Da,);
Augment model Mél +— Aug(Ms,);

end
’ M .
return { Ms,, Mg };Z,;
i

Algorithm 3: SHAPOOL: MoE-based Shadow Model Construction

Input: MoE model f, training dataset Dy,., fine-tuning dataset D, number of experts M,
number of layers L, number of shared models n.

Output: Trained MoE model f, data-to-pathway mapping matrix B, selected pathway set S.
// Before training: Pathway-choice routing

Randomly split Dy, into MT subsets: Dg

i
ML
w=1>
Construct mapping matrix B between Dy,. and {P, ,Ju”f:l;
// In training: Pathway regularization
foreach (z,y) € Dy, do
Randomly select two different pathways Py, Pa;
Compute intermediate output h using Eq. ;
Compute prediction py < f(x; P1);
Compute intermediate output ko using Eq. ;
Compute prediction p2 +— f(z; P2);
Update model parameters of f using Eq. (@);
end
// Fine tuning: Pathway alignment
Randomly select n pre-trained pathways S’
fori =14 < |S|do
foreach (z,y) € D, do

Compute prediction p < f(z; S;);

Update model parameters of f using Lo g (p; y);
end

end
return f, B, S;

C Experimental Details and Additional Results

C.1 Model Setup

In our experiments, both the target and conventional shadow models adopt the same architecture.
Excluding the initial and classification layers, we construct the shadow pool by dividing the remaining
architecture into multiple expert layers. They are trained for 100 epochs with a batch size of 64 and
an initial learning rate of 0.1. We use the SGD optimizer with a weight decay of 5 x 10~* and a
momentum of 0.9, along with a cosine learning rate schedule [60] for optimization.

Our experiments replace the conventional shadow models with shared models generated from
SHAPOOL. For LiRA-offline, a relatively weaker attack, we remove the pathway regularization (PR)
module from SHAPOOL and set the fine-tuning epoch to 3 in the pathway alignment (PA) module.
In contrast, LiRA-online is equipped with the PR module for SHAPOOL and sets the fine-tuning
epoch to 10 in PA. This difference arises from the sensitivity of attacks for shadow models.

All experiments are implemented in Pytorch and performed on an NVIDIA RTX-3090 server with
the Ubuntu operating system.
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C.2 Off-the-shelf MIAs

We adopt two off-the-shelf MIAs to demonstrate the effectiveness of SHAPOOL, including:

LiRA [5] requires training multiple shadow models, where half are IN models trained on the query
example, and the remaining half are OUT models that have not seen the example. It collects scaled
logits from shadow models, fits them into two Gaussian distributions, and uses a likelihood-ratio test
to determine the membership status of the query example. There are two attack modes: LiRA-online,
which relies on two Gaussian distributions for members and non-members, and LiRA-offline, which
relies solely on the Gaussian distribution of non-members.

RMIA [12] introduces a fine-grained modeling of the null hypothesis (OUT models) within the
likelihood ratio test framework. As with LiRA, it comes in two variants: RMIA-online and RMIA-
offline. By introducing reference models and population data samples to reduce reliance on shadow
models, both modes achieve comparable performance.

In our experiments, we report the average attack results of 1,000 query examples.
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Figure 5: (a) Distribution of shared models of a vanilla MoE. (b) Distribution of shared models after
pathway alignment. We present the model output (i.e., scaled logits) distributions for both training
(member) and test (non-member) data points using ResNet18 and CIFAR100. The red and blue
curves represent the distributions of the target model, while the pink and sky-blue curves illustrate
that of shared models from a shadow pool. Since the target model is trained independently, we align
the outputs of shared models to better resemble it through pathway alignment.
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Figure 6: Effect of Fine-tuning Epoch.

C.3 Additional Experimental Results

C.3.1 Comparison with Other Baselines

We consider the BASE method as an ideal baseline for training shadow models, as it independently
trains shadow models with the same architecture and same data distribution as the target. As such,
BASE is a natural and widely adopted approach, especially in black-box MIAs. The only disadvantage
is its high computational cost, which is the main motivation of this paper to train shadow models with
lower costs.
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Regarding alternative shadow model construction strategies, naive approaches such as simple model
augmentation have demonstrated only limited effectiveness. In addition, R2 [61] introduces attack
D, which leverages distilled models to approximate the OUT world of a query example. We refer
to this baseline as Distilled. As shown in Table[3] this approach delivers suboptimal performance
regardless of whether 64 or 128 distilled models are employed. Such results can be attributed to
two reasons. First, while distilled models focus on the OUT world, SHAPOOL considers both IN
and OUT worlds. Moreover, distilled models are not well-suited for constructing IN worlds, as
the soft-labeling technique mitigates model overfitting—a common defense against MIAs [62,[63]].
Second, each distilled model is still trained from scratch using soft-labeled population samples,
meaning it does not reduce the training cost of shadow models. In contrast, SHAPOOL refines the
shadow model training process by utilizing shared models, significantly reducing the computational
cost of MIAs.

Table 5: Various baselines on CIFAR100 and ResNet18 (LiRA-online).

Method AUC TF1 Cost(h)
BASE 0.94 0.53 16.0
Distilled(64) 0.85 0.17 1.85
Distilled(128) 0.83 0.21 3.45
SHAPOOL 0.93 0.53 4.0

C.3.2 Performance on More Datasets

Attack Performance and Computational Cost on CINIC10. We now evaluate the performance of
SHAPOOL on the CINIC10 dataset using ResNet18. The experimental results in Table [| demonstrate
that our proposed method significantly reduces training costs while preserving comparable attack
effectiveness, thereby enabling low-cost yet high-accuracy inference attacks. Moreover, Figure [7]
presents the ROC curves of our proposed approach on CINIC10, further demonstrating the superiority
of SHAPOOL on attack performance.

Table 6: Attack performance and computational cost of LiRA on CINIC10. TF1 denotes
TPR@FPR=1% and results = indicate changes in attack performance smaller than 0.02.

METHOD LIRA-OFFLINE LIRA-ONLINE
AUC TF1 CosT AUC TF1 CosT
CONSTRAINED SCENARIO

BASE 0.61 0.11 1.25 0.59 0.09 1.25

SHAPOOL 0.68 0.13 1.24 0.75 0.15 1.55
A +0.07 +0.02 - +0.16 +0.06
UNCONSTRAINED SCENARIO

BASE 0.61 0.14 40.3 0.77 0.22 82.8

SHAPOOL 0.70 0.15 4.8 0.77 0.21 6.2
A +0.09 = 1 88% E = 193%

Attack Performance and Computational Cost on TinyImageNet. In addition to the relatively
small-scale datasets used in the previous experiments, we further evaluate SHAPOOL on a larger and
more challenging dataset. Specifically, we conduct experiments on TinylmageNet, a subset derived
from ImageNet, using ResNet18 under the unconstrained setting. Table[7] provides further evidence
supporting the effectiveness of our approach.

Table 7: Performance and cost of RMIA on TinyImageNet.

RMIA-OFFLINE RMIA-ONLINE
Method AUC TF1 TFO1 COST AUC TF1 TFO1 COST
BASE 0.99 0.95 0.86 28.1h 0.99 0.94 0.84 61.9h
SHAPOOL 0.99 0.94 0.87 7.9h 0.99 0.95 0.88 16.1h
A = = = 172% = = +0.04 174%
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Figure 7: Comparing the true positive rate vs. false positive rate of our method on the CINIC10
dataset. (a)-(b) constrained scenarios for LiRA-offline/online. (c¢)-(d) unconstrained scenarios for
LiR A-offline/online.

C.3.3 More Ablation Studies

We conduct additional ablation studies to investigate the impact of different settings on attack
performance using CIFAR100 and ResNet18, where a shadow pool is prepared and shared models
are randomly selected accordingly.

Size of Training Set |D,,.|. SHAPOOL constructs a shadow pool with numerous shared models,
resulting in more parameters compared to a single shadow model, which naturally demands more
training data. We now examine the impact of training set size on attack performance, relative to
the size of the training subset used for conventional shadow model training. Table [§] presents the
results for different scales of training datasets. | D 4, | represents the size of the training subset for a
shadow model trained independently. Both |D,.| and | D 4, | are sampled from the auxiliary dataset,
but we use different notations to distinguish the training set of the shadow pool from that of an
individual shadow model. We observe that the performance of SHAPOOL improves significantly
after incorporating an additional 20% of data points, and then stabilizes with further increases.

Size of Fine-tuning Set |D,|. Pathway alignment fine-tunes the selected pathways to reduce
generalization mismatch on the training set D,. Here, we examine the effect of the fine-tuning
training set size, as shown in Table The percentage represents the ratio of D, to a training set
Dy,. Notably, there is an overlap between D, and Dy,., indicating that the training set can be reused
without introducing new data. We find that even a small fine-tuning dataset can achieve stable attack
performance.

Fine-tuning Epochs. We explore the effect of the fine-tuning epochs in pathway alignment, as shown
in Figure [6] The results show that the fine-tuning epoch has a limited effect on the LiRA-offline
attack, while a larger epoch (e.g., greater than 15) leads to nearly stable attack performance for both
attacks. This difference stems from specific algorithms: LiRA-offline relies on non-member output
distributions, which are initially similar in Figure[5] This demonstrates that our pathway alignment
requires minimal fine-tuning costs to mitigate generalization mismatch.

Number of Experts. The above experiments use four experts in SHAPOOL for ResNet18 by default;
now, we explore whether other settings influence the attack performance. As shown in Table 9] we
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find that introducing more experts improves attack performance, especially for the LiRA-online
attack, as more experts enhance the diversity among shared models.

Table 9: Effect of the number
of experts.

Table 8: Effect of the training

Table 10: Effect of the fine-
set | Dy,.| on TFI.

tuning set | D,| on TF1.

|Derl/|Dag| LiRA-online LiRA-offline M LiRA-online LiRA-offline

|Dg| LiRA-online LiRA-offline
1.0 0.33 0.22 3 0.39 0.35 1000 (2.5%) 0.28 029
1.2 0.37 0.28 4 0.42 0.33
3000 (7.5%) 0.41 0.31
1.4 0.38 0.30 5 0.44 0.32 5000 (12.5% 0.40 029
1.6 0.36 0.32 6 0.47 0.28 (12.5%) : :

Performance under Fixed Costs. Take LiRA-online on CIFAR100 with ResNet18 as an example.
A single SHAPOOL outperforms four individual shadow models under the same compute budget.
Furthermore, four SHAPOOLs—at a cost equivalent to 16 individual models—nearly match the
performance achieved by using 128 shadow models. Table|l I|suggests that SHAPOOL consistently
outperforms LiRA across a range of fixed compute budgets.

Table 11: Performance of LiRA-online with varying budgets on CIFAR100 (AUC/TF1)

#SHAPOOL (=#SM) 1=0 2(=%) 3(=12) 1(=16)
BASE 0.90/0.34  0.93/044 0941046  0.93/0.49
SHAPOOL 0.92/042  0.93/048  0.93/0.50  0.94/0.53

Algorithm 4: SHAPOOL-based Property Inference Attacks

Input: Predefined values ¢y and ¢1; Attack dataset Dgttqck; Shadow dataset D; Attack algorithm A; Target
model M; MoE models fy and fi; Epoch

; Output: Inferred property value £ € {to,t1}

fori € {0,1} do

Initialize mapping matrix of f; via pathway-choice routing;

for j = 1to £ do
Sample D} ;, D7 ; C D such that P(D} ;)
Randomly select pathways p; and p2 in f;;
Train p; and p2 jointly using pathway regularization on Dil, j and Dﬁ s

end

Randomly select a set of pathways S C f;

foreach pathway p € S do

| Record confidence scores: ¢; <= fi(Dattack; P);
end

P(D?;) = tis

end

Construct A using distributions: No ~ co, N1 ~ c1;
Collect confidence scores: ¢ < M (Dgttack);

Compute probability: ¢y <— A(c | No), 41 < A(c | N1);

return f < arg max /;;
1€{0,1}

C.4 Extension to Property Inference Attacks

Although our experiments primarily focus on MIAs, SHAPOOL can be extended to other attacks such
as black-box property inference attacks (PIAs), which aim to distinguish statistical properties (e.g.,
between tg and 1) [9,110]. To adapt SHAPOOL for PIAs, we can modify the training data of each
pathway so that a SHAPOOL is trained on data satisfying ¢ (or ¢1), thereby replacing the multiple
shadow models traditionally trained for each predefined property, as illustrated in Algorithm {4}

Table 12: Performance of BASE and SHAPOOL on PIAs using the Census dataset (Accuracy)

Acc (Property=sex) Acc (Property=race) Cost (h)
BASE 0.5125 0.8594 12.8
SHAPOOL 0.5243 0.8438 0.9
A E E 192%
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Following prior works on PIAs [[10], we conduct experiments on the Census dataset [64], focusing
on two target properties: sex (“Female”) and race (“Black™). We aim to distinguish between 0.3
and 0.5 for the sex property, and between 0.05 and 0.15 for the race property. Specifically, we use
a four-layer MLP with layer sizes of 32, 16, 8, and 4, employing ReLU activation functions. For
the baseline PIAs (i.e., BASE), we build 32 shadow models for each predefined ratio, whereas in
our method (i.e., SHAPOOL), we construct four shadow pools, each consisting of four MoE layers
with two experts per layer, and select eight pathways for inference attacks. The comparison results,
presented in Table [I2] demonstrate that our method achieves comparable inference performance
while significantly reducing training costs.

22



	Introduction
	Preliminary
	Shadow Model-based Inference Attacks
	Mixture-of-Experts Mechanism

	Analysis of Shadow Models
	Methodology
	Motivation & Challenges
	SHAPOOL: MoE-based Shadow Pool Training Framework

	Evaluation
	Experiment Settings
	Main Results
	Ablation Study

	Discussion
	Conclusion
	Appendices
	Related Work
	Shadow Model-based Inference Attacks
	Mixture of Experts

	Case Study: Model Augmentation-based Shadow Models
	Experimental Details and Additional Results
	Model Setup
	Off-the-shelf MIAs
	Additional Experimental Results
	Comparison with Other Baselines
	Performance on More Datasets
	More Ablation Studies

	Extension to Property Inference Attacks


